Andrej Karpathy talks about how Tesla's NNs are structured and trained [video]

415 points by ojn 5 years ago | 241 comments
  • protomikron 5 years ago
    Fun fact for all of you:

    Some time ago (around ~10 years) this guy (the presenter) was internet famous for being a Rubik cube speed solver and making tutorials and videos about that: https://www.youtube.com/watch?v=609nhVzg-5Q

    • nsilvestri 5 years ago
      I'll always know him as badmephisto. In a recentish reddit AMA, he says he still keeps a cube on his desk so he can practice a bit and not forget his algorithms.
      • lanius 5 years ago
        Can you provide the link to that AMA?
      • eyeundersand 5 years ago
        Wow! Thank you.

        What a blast from the past! I learned how to solve the Rubik's Cube blindfolded by watching him, back in the day. His tutorials are perfect and I've probably recommended his channel to ~50 people myself. Crazy he only has 36.6k subs.

        Glad to see he's doing well.

        • 5 years ago
        • jacquesm 5 years ago
          The competition in this space is great but I can't help but wonder what would happen if instead all these companies pooled their resources and went after the goal collectively. There is so much duplication going on and the paths do not seem to me - as an outsider - to be all that divergent, which is usually a pre-condition for having a lot of independent efforts one of which will succeed.

          It's as if everybody wants to be the one to exclusively own the tech. Imagine every car manufacturer having a completely different take on what a car should be like from a safety perspective. We have standards bodies for a reason and given the fact that there are plenty of lives at stake here maybe for once the monetary angle should get a back-seat (pun intended) to safety and a joint effort is called for. That would also stop people dying because operators of unsafe software are trying to make up for their late entry by 'moving fast and breaking things' where in this case the things are pedestrians, cyclists and other traffic participants who have no share in the monetary gain.

          • jfoster 5 years ago
            > The competition in this space is great but I can't help but wonder what would happen if instead all these companies pooled their resources and went after the goal collectively.

            It would probably slow down. 9 women can't have a baby in 1 month. Besides that, the disagreements about approach, politics, or eventual competitive interests would probably bring things to a halt for a long time.

            I don't think the solutions to this problem are resource-constrained. Many companies would happily find more resources in order to be first to market with this technology.

            • oneshot908 5 years ago
              Also agreed, when hedge funds don't silo their quants, instead of seeing 50 different strategies from 50 quants, they get 50 variants of the same strategy, source:

              https://www.amazon.com/gp/product/1119482089/ref=ppx_yo_dt_b...

              • p1esk 5 years ago
                Exactly. Look at Human Brain Project: $1B and 10 years later what exactly have they achieved? Just like you said - disagreements about approach, politics, or eventual competitive interests did bring things to a halt for a long time
                • jacquesm 5 years ago
                  The human brain project was DOA from day #1. Unrealistic goals, no clear reason why more money would lead to better results and no concrete deliverables that anybody needed.
              • account73466 5 years ago
                >> if instead all these companies pooled their resources and went after the goal collectively.

                That would be a bad idea because like in evolutionary processes you need this diversity of ideas to locate better local optima even if it will take longer.

                • paraschopra 5 years ago
                  Standards shouldn't emerge too soon. I think for self driving tech, at the current stage, competition is good because there are lots of unsolved questions. Competition will ensure the best tech is ultimately available to consumers.

                  Of course, it's not a binary choice. Things like data should probably be pooled but the use of data in tech should compete.

                  • jacquesm 5 years ago
                    Ditto validation tech frameworks. If those are not standardized then people will not be able to make an informed choice about which solution is the safest other than to wait a decade and do a bodycount.
                  • konschubert 5 years ago
                    I think that there is still a need for some brilliant insights and breakthroughs, it isn't just a matter of getting the work done.

                    So actually, I think it's one of these situations where having a lot of independent efforts might be worth it.

                    • londons_explore 5 years ago
                      > There is so much duplication going on

                      In the self-driving world, the duplication is necessary - different companies are taking different directions, and nobody really knows which will work out.

                      In the ML hardware world, the duplication is mostly unnecessary. People are developing their own inference hardware ASIC's because they're relatively simple (compared to designing a CPU from scratch, designing a TPU is pretty simple because there are so few operations, and no complex out-of-order execution), and you can't buy one off the shelf yet.

                      As soon as ML hardware becomes available to buy off the shelf without a massive price premium, everyone will switch to that.

                      • p1esk 5 years ago
                        I do research in ML hw field: there are currently a couple hundred designs to run a convolutional NN inference. A couple of dozen have been built. They have pretty different underlying technologies (CMOS, floating gate, ReRAM/memristors, etc), different ideas (systolic arrays, analog crossbars, cache organization, lookup tables, data reuse, TDM, using spikes, etc), wildly different power (from microwatts to hundreds of Watts), size, speed, precision, flexibility, cost, ease of use/integration, etc. This is just convnet inference. Lots more is needed to do training in hw, again with multiple choices on how to do it.

                        So which one design you suggest we all use for all our ML needs?

                        • londons_explore 5 years ago
                          The duplication I see in the commercial world in ML inference hardware is in designs similar to the TPU... So a big ~128x28 accumulating mat-mul array, with enough memory throughput to get one operand in and out fast, and enough cache to store the other operand (weights) and switch between which weights are used so the mat-mul array can very efficiently do larger matrix sizes.

                          Also lookup tables for a bunch of activation functions.

                          That basic design can efficiently implement nearly any neural net architecture as long as the layer sizes are at least 128x128 and fixed point is okay.

                          The other exotic designs you suggested are more academic research things, and not yet deployed at scale in anyone's datacenters.

                      • ArtWomb 5 years ago
                        We could see some of this play out in the China EV market in the coming years. State sponsored subsidies around infrastructure standardization. Combined with foreign investment and competition spurring innovation.

                        What I've seen personally is what can be loosely termed "emergent consensus". Historical competitors (and often it gets whittled down to two giants, such as Boeing and Airbus) will work in secret on research. But after years of experimentation arrive at very similar outcomes. An optimal answer that could only be arrived at through constant trial and error, product evolution and iteration.

                        Regarding Karpathy's PyTorch presentation I don't thing anything that wasn't already public was revealed. The FSD board with custom NPUs is a Work of Art. I like that there are dual redundant streams. And the scale of the dataset is already well know: 4096 HD-images per step!

                        If I had to speculate, the "Dojo Cluster" may be envisioned as an effort to share data and compute with industry partners as a cloud SaaS product and ancillary revenue stream. But that is pure speculation ;)

                        Inside Tesla’s Neural Processor In The FSD Chip

                        https://fuse.wikichip.org/news/2707/inside-teslas-neural-pro...

                        • mkolodny 5 years ago
                          Fortunately, some companies do share a significant amount of what their cars have learned so far. Uber publishes a ton of papers about their self-driving research [0][1]. Waymo released an open autonomous driving dataset, and publishes papers as well [2][3].

                          Of course, papers and data aren't code. But I think a lot more is being shared than people realize.

                          [0] https://eng.uber.com/author/raquel-urtasun/ [1] https://eng.uber.com/research/?_sft_category=research-self-d... [2] https://waymo.com/open [3] https://arxiv.org/pdf/1812.03079.pdf

                          • d_burfoot 5 years ago
                            I don't know about sharing tech, but there should definitely be a shared evaluation benchmark, and some kind of oversight agency should be involved. The idea would be: if you want to be permitted to operate an AV on public roads, you need to demonstrate that your vehicle's vision system can detect pedestrians and obstacles with near-perfect accuracy on a large shared image database, most of which is NOT distributed to researchers.
                            • credit_guy 5 years ago
                              Competition is good. It keeps you honest. The Manhattan project experienced competition, of the do-or-die type. It only was not internal, it was from the Nazis, Japan, and later the soviets.

                              Right now, the competition in the self-driving area is metaphorically as close to do-or-die as you can have in peace time. GM as a regular car manufacturer is toast, Cruze is pretty much their only hope. Uber is bleeding, if they pull self-driving off, they are kings. The German manufacturers are watching in disbelief as Tesla is starting to eat their pie. Conversely, Tesla knows that in what they are doing (electric cars) they don't enjoy any fundamental moat. If the Germans get their act together, they'll be able to make equally performant electric cars, but true luxury. The only one that's not really about survival is Waymo.

                              • maelito 5 years ago
                                I wonder if the French civil nuclear electricity program that led to this level of low carbon emissions, or the TGV (high speed rail system), could be good examples of what you're asking for.

                                Maybe the companies actually building the nuclear plants and trains and rails were actually in competition ?

                                • atoav 5 years ago
                                  There was a time in the medival ages where alchemists were kidnapped by kings and held in chambers so they would only generate knowledge for them. This obviously lead to a similar duplication to the one you describe, right up to calculus where Newton kept the thing hidden in a drawer and then Leibnitz had the same idea.

                                  Once that kind of secrecy was gone our whole technical progress was accelerated, because people could build on the discoveries of other people.

                                  Right now we are going back to the alchemist model in some ways (the highest profile people work for the big companies and don’t share their discoveries). This makes progress slower.

                                  • modeless 5 years ago
                                    > the highest profile people work for the big companies and don’t share their discoveries

                                    I have to strongly disagree with this for the specific case of AI/ML. The big company labs are publishing open access papers non-stop, often with code and sometimes even datasets. They're more open than some areas of academia, in fact.

                                    • atoav 5 years ago
                                      Really? I heard the opposite from someone in the field, who told me that they do publish but it is never the really relevant stuff. I can’t really judge that myself to be honest
                                  • kiwicopple 5 years ago
                                    Ideally everyone would collaborate on inputs and compete on outputs. All the data gathering, tagging, mapping etc could be put into a shared domain, and then after that the companies decide what to do with it and how to commercialise it.

                                    Easier said than done, but I think it would strike the right balance between reducing duplicate work, and incentivising progress.

                                    • arketyp 5 years ago
                                      You can apply this line of reasoning on many markets, like the pharma or food industry which also have safety concerns. It strikes me as the kind initiatives EU attempts nowadays when realizing we are running behind on some tech and want to leverage the one possible advantage we have as a great centralizing power. Not too different from communist states, actually. I agree with the sentiment that redundancy seems wasteful, but it seems to me a necessary evil as a driving force in development, as with the right to private property in general.
                                      • jacquesm 5 years ago
                                        I'm reminded of the Manhattan project and I don't think they would have succeeded in their goal if they had tried to run 10 of those at once. There just aren't that many really great scientists in a space this narrow.
                                        • iguy 5 years ago
                                          They built complete factories for three different technologies, and finally delivered two totally different bomb designs.

                                          Which is a sign they were pretty worried about choosing to put all their smart guys on one path, and picking the wrong one. And the number of smart guys they had was certainly a real constraint. Even under their very stressed circumstances, exploration and competition were important.

                                          • tim333 5 years ago
                                            It's kind of a different class of problem. With self driving you can have someone like Hotz or the Cruise guys knock up a system with limited resources and have it work quite well. You just can't do that with developing nuclear weapons.

                                            Also self driving is not a problem where you can put a bunch of geniuses in a room and have them calculate the correct design. There are too many unknowns. It needs experimentation and trial and error.

                                            • arketyp 5 years ago
                                              Fair point. And the moon mission. Autonomous driving is such a consumerist issue though, seems quite well suited for a free market dynamic. I'd rather see a great joint effort on fusion energy or something.
                                              • hgoel 5 years ago
                                                Talk about twisting the argument. The Manhattan project was in competition with the Soviets and the Nazis, it was less a result of some unified front of all the smartest scientists in the world, and more of a result of "if we don't succeed first, someone much worse probably will".

                                                Your logic of "if there were 10 of them simultaneously, it wouldn't have worked out" is flawed and self serving in that if you ignore all competition and just divide a single competitor into any number of smaller entities, of course at some point they'll be too small to be viable.

                                            • eanzenberg 5 years ago
                                              Competition is good
                                              • nfoz 5 years ago
                                                Choice is good, alternative implementations are good. But I think competition is bad. It is wasteful and antisocial.
                                                • eanzenberg 5 years ago
                                                  Competition is good and directly leads to the progress we’ve seen in the western world.
                                              • acollins1331 5 years ago
                                                I think the diversity you see in cameras and lidar placement and existence is worth it enough to have different paths forward. Tesla seems insistent that it can be done sans lidar. It's definitely worth it to see which approach works best.
                                                • logicallee 5 years ago
                                                  >Imagine every car manufacturer having a completely different take on what a car should be like from a safety perspective. We have standards bodies for a reason

                                                  Roads are also governed by public bodies. Road signs are standardized and public.

                                                  I think the government should take a much larger role in defining self driving cars. For example, rather than using computer vision to recognize signs, signs could be active standardized beacons; instead of having to recognize lanes, they could be repainted with rfid chips that are trivial for cars to recognize and follow.

                                                  Avoiding driving into people is also something that was somewhat regulated by crosswalks with pedestrian lights. Would it be absurd for the crosswalk to know roughly how many people are at it, then broadcast this to the car, rather than having the car have to recognize them?

                                                  There are many things the government could do with transportation infrastructure that would benefit everyone, many of which are literally impossible for companies to do separately. Can you imagine if we had to wait until IBM (or Siemens or Google or Apple) got into the business of launching satellites before we got GPS? There is a good chance that to this day cell phones wouldn't know their location or give anyone any mapping applications.

                                                  To me, self driving cars are similar. Many parts of transportation are a public good.

                                                  • kortex 5 years ago
                                                    > Would it be absurd for the crosswalk to know roughly how many people are at it, then broadcast this to the car

                                                    Yes, completely absurd. For one, many places are too sparse, poor, or unstandardized for this to be remotely economical. Two, people often don't cross at crosswalks (jaywalking). Level 5 AV is a thing where 99% coverage isn't good enough. You need a lot of nines.

                                                    That's why many think lidar systems are a crutch. If lidar can't work in snow or heavy rain (at least 1-2% of days in the north), then you need fallback which must still be >99% as effective to avoid incidents. But then why not just use the fallback?

                                                    Generating data? Sure. But for actual use in the data pipeline? Makes you rely on an ultimately untenable solution.

                                                    • logicallee 5 years ago
                                                      In sparsely populated areas smart roads could inform the car that there hasn't been any movement whatsoever in the whole area for hours. (Along the entire road and adjacent to the roads). How the car responds (driving somewhat faster, perhaps) could mean a large measure of safety as compared to when there are a large group of people about to cross a rural road at night that the car may or may not see visually.

                                                      Anyway it's just one example. RFID or similar embedded beacons in the road paint would make roads much easier for cars to follow. They are expensive for any one company to do but cheap for the government to do if it is done everywhere at once and lasts 5-10 years. Road signs that broadcast what they are (instead of needing to be "seen" and interpreted visually instead of through radio by the car), are similar.

                                                      Finally, a government standard could coordinate cars into a caravan, avoiding pileups for example, and giving the participating cars several advantages you can find by Googling "car caravan". (Though this might be achieved by industry.)

                                                • timzaman 5 years ago
                                                  • throwaway010718 5 years ago
                                                    Any guess what the compensation is like for these positions ?
                                                    • drchewbacca 5 years ago
                                                      If you get rejected just edit 10 words on your resume and then resubmit. Do this a 100hz and you'll get in eventually :)
                                                      • choppaface 5 years ago
                                                        Less than Uber, but more than Waymo, who is only offering ~$20k-ish stock packages like a late start-up who expects to 10x. Depends on how you value Tesla stock, though. See levels.fyi
                                                        • cloudwalking 5 years ago
                                                          I know people at both Tesla and Waymo, and Tesla does not pay as well as Waymo.
                                                          • 5 years ago
                                                        • soulslicer0 5 years ago
                                                          lol i just did the interview and failed. had to find shortest path between tesla chargers. all in C++. completed it but failed
                                                          • lsh 5 years ago
                                                            you were supposed to bore a tunnel directly between the two points
                                                          • karpathy 5 years ago
                                                            Very likely not for the positions above! (they all focus on Python)
                                                            • boulos 5 years ago
                                                              Slightly off-topic (but related to the side thread where people didn’t realize you went to Tesla): your HN about still says you’re at OpenAI :).
                                                              • bitL 5 years ago
                                                                IoU
                                                              • ars 5 years ago
                                                                How does that work? Where you given the algorithm to use? Or was it really a data science question, rather than a programming question?
                                                                • meheleventyone 5 years ago
                                                                  Without more details it sounds like an algorithm problem you'd be expected to solve from prior knowledge. Stuff like a breadth first search from the start point, up through various path finding algorithms to applying heuristics (I believe route finding on roads exploits the road topology).
                                                                • f00_ 5 years ago
                                                                  Could you have just used dijkstra or breadth first search?
                                                                  • 5 years ago
                                                                  • sdan 5 years ago
                                                                    Thanks Tim! Would love to apply, but still a student. Hoping to join in the future given how nicely orchestrated your team has been training nets.
                                                                    • ojn 5 years ago
                                                                      Apply for internship. Doing well on an internship is a great way to get a foot in the door after graduation.
                                                                  • modeless 5 years ago
                                                                    Awesome presentation. Crazy that they're developing their own training hardware too. It's going to be a very crowded space very soon. Can they really stay ahead of everyone else in the industry? Can it really be cheaper to staff up whole teams to design chips for cutting edge nodes, fabricate them, build supporting hardware and datacenters and compilers, than to just rent some TPUs on Google Cloud?

                                                                    I can see the case for doing their own edge hardware for the cars (barely), but I really don't think doing training hardware will pay off for them. If they're serious about it, they should spin it out as a separate business to spread the development cost over a larger customer base.

                                                                    Also, I'm really curious whether the custom hardware in the cars is benefiting them at all yet. Every feature they've released so far works fine on the previous generation hardware with 1/10 the compute power. At some point won't they need to start training radically larger networks to take advantage of all that untapped compute power?

                                                                    • antpls 5 years ago
                                                                      Watch the presentation from 6 months ago, where they explain the decision to build their own hardware for inferring : https://youtu.be/Ucp0TTmvqOE?t=4309

                                                                      It's not surprising that they also build the hardware for training. Correct me if I'm wrong, but Google use the same TPUs for training and inference, because the underlying operations are the same : multiply then add numbers. Once Tesla built the hardware for inferring, the design of the hardware for training is probably similar.

                                                                      Unlike Google's TPUs, Tesla have a specific use case for the hardware (computer vision for automotive), and maybe than means they can further optimize the computation pipeline with their own specialized hardware.

                                                                      • spyder 5 years ago
                                                                        Very good video, it contains answers to many of the questions that people are speculating here about and other interesting things about Tesla's custom chip.

                                                                        - It's under 100W so they can retrofit into old cars

                                                                        - lower part cost, so they can do full redundancy with doubling the parts

                                                                        - they estimated that 50 TOPS is needed for self-driving

                                                                        - lower latency with batch size of 1 compared to TPU's 256

                                                                        + GPU for post-processing

                                                                        - security: only code signed by Tesla can run on the chip

                                                                        - at the time (2016) there was no neural net accelerator chips

                                                                        - some part's are built from bought IP (so not reinventing them) Probably things like the 12 ARM CPUs, LP DDR4 memory, video encoder, maybe the separate post-processing GPU too...

                                                                        - physical size of the board is small

                                                                        - performance example: on CPU 1.5 FPS, on GPU (600 gflop) 17 FPS, on Tesla's NN accelerator 2100 FPS

                                                                        - Besides the convolution even the ReLU and Pooling is implemented in hardware

                                                                        - Paying attention to the energy efficiency down to the arithmetic and data type usage.

                                                                        - The silicon cost is less than their previous hardware (HW 2.5)

                                                                        - old hardware 110 FPS new one 2300 FPS

                                                                        - 144 TOPS compared to NVidia's Drive Xavier 21 TOPS

                                                                        • modeless 5 years ago
                                                                          Google has Edge TPUs for use outside datacenters, and they don't support training. Neither do the chips Tesla made for their cars. It's a pretty different problem.
                                                                          • antpls 5 years ago
                                                                            I wouldn't be so sure. Edge TPUs could be the exact same architecture than Google Cloud TPUs, but as you need less computation power for inferring than training, they have simply less transistors on the die and could be underclocked.

                                                                            In other words, Cloud TPUs could be the same architecture than Edge TPUs but scaled to an higher frequency and more packed.

                                                                            I guess we need sources to confirm.

                                                                        • breatheoften 5 years ago
                                                                          I think the size of the networks they are training might already be good motivation for developing custom hardware for training.

                                                                          I would expect their training hardware to be something specifically aimed at optimizing memory bandwidth to support distributing training of their “shared” hydra feature. It’s interesting that the shared hydra feature extractor is able to converge as they keep adding more and more output predictions under a training regime of interleaving asynchronous updates to the model from different predictor networks ...

                                                                          Seems to me the formula they are pursuing with custom hardware might be to support a strategy of 1. keep adding more predictions based on same feature 2. Increase the span of time represented by batches used to train the recurrent networks

                                                                          Both pursuits seem very data efficient in terms of the amount of training data they could conceivably collect per unit time of observation ...

                                                                          Custom hardware with a problem specific memory architecture aimed at efficiently supporting training with very large rnn time slices could be developed that’s more about “make it possible to train this proposed model at all” rather than “make it faster/cheaper to train existing common model architectures”. When custom hardware is required to make it possible to train the model they want, the validity of the hardware development cost bet might end up being more about the effectiveness of the model they think they want than it is about maintaining general purpose performance parity vs any off the shelf hardware options ...

                                                                          • jeffshek 5 years ago
                                                                            At Tesla's scale and priorities, they'd probably be less keen on using external cloud providers. Using TPUs at their scale would certainly require Google's AI consultants to supervise which isn't ideal for Tesla.

                                                                            Not agreeing or disagreeing with their decisions, but if you have the resources, you can certainly design a custom chip that performs a specific type of task very well that beats other competitors. Nvidia's GPUs are have to be reasonably good at training across different NNs. You could have a chip that's exceptional good at training one/two specific types of tasks.

                                                                            For most companies, this would be a bad idea. However, Tesla knows how to produce hardware.

                                                                            • choppaface 5 years ago
                                                                              > At Tesla's scale and priorities, they'd probably be less keen on using external cloud providers.

                                                                              Not sure if it’s still the case today, but previously Tesla’s training was done on-prem and with their own in-house Tensorflow clone.

                                                                              And yes, if you get TPUs from GCloud, you are likely to be working with their engineers to get things working. Those engineers tend not to have much business conflict of interest, though. They want to help you because your problems are likely more interesting than what they’d otherwise be assigned.

                                                                              • chronic739i 5 years ago
                                                                                > At Tesla's scale and priorities, they'd probably be less keen on using external cloud providers.

                                                                                By hardware-hours, Tesla is hardly one of the top companies training deep networks. Planet Labs (satellite imaging), Netflix, Pornhub, to name a few.

                                                                                What's the info they'd leak to the Google consultants? How much data or TPUs they're using? This is practically public information.

                                                                                • Udik 5 years ago
                                                                                  What does Netflix do with NNs?
                                                                                  • millettjon 5 years ago
                                                                                    Do those really take more than 70,000 gpu hours to train a model?
                                                                                • m0zg 5 years ago
                                                                                  Nothing crazy about it. TPU-like stuff is ~10x the energy efficiency of GPUs and several times the speed. When you're spending megawatt-hours and days to train a single model, it adds up in both real and opportunity costs.

                                                                                  Also, Google TPU TOS prohibits the use of TPUs for stuff that competes with Google (and I'm assuming with other companies under Alphabet umbrella), at Google's sole determination. Not that it would be a good idea to upload Tesla's proprietary data into Google Cloud even if it did not. Cloud, after all, is just somebody else's computer.

                                                                                  • modeless 5 years ago
                                                                                    > Google TPU TOS prohibits the use of TPUs for stuff that competes with Google

                                                                                    I don't think this is true. If you're talking about https://news.ycombinator.com/item?id=19855099, it doesn't apply to TPU hardware, as is explained in the comments there.

                                                                                    > TPU-like stuff is ~10x the energy efficiency of GPUs

                                                                                    10x is probably overstating it when talking about newer GPUs because they have ML hardware in them now. Also, that still doesn't make it a good idea to build your own chips because there will soon be many third party options to choose from. Doing your own chips is a bet that you will out execute dozens of companies ranging from startups to industry giants. Simply taking your pick of the best commercially available options is likely to be a better choice in the near future.

                                                                                    • m0zg 5 years ago
                                                                                      Yep that's the clause. The clause itself is not that problematic for Tesla. What's problematic is that it can be changed over time, and it'd be foolish to single-source something as important as deep learning compute without the option to go elsewhere. Not to mention the rather extravagant Cloud pricing. So Tesla is taking a page out of Steve Jobs' playbook and it will control its own core tech. That's smart, especially considering that they already have bits and pieces of the IP that they'll need.
                                                                                    • oneshot908 5 years ago
                                                                                      Not remotely true. TPUs and GPUs are neck in neck with each other right now w/r to overall efficiency, check out https://mlperf.org/press#mlperf-training-v0.6-results for more details.

                                                                                      GPU advantage: more refined ecosystem and you can buy them for $<1000 or get laptops with them built in, and if NVDA has sweat more software engineering blood and tears than GOOG into your model's functions, it will run better on them

                                                                                      TPU advantage: Colab has a free tier that lets you play with them at no charge and if GOOG has sweat more software engineering blood and tears into your model's functions, it will run better on them.

                                                                                      All IMO of course. And deep down it can get more complicated than that, but I salute GOOG for being the first company to ship competitive AI HW, doubly so at scale.

                                                                                      • sdan 5 years ago
                                                                                        Stuff like their TPU and Waymo's Honeycomb Laserbear (something along those lines... their lidar naming system is pretty long) shows that Google is making good products for a limited reach of people.

                                                                                        TPU? Seems like it has a lot of potential, but not for people directly competing with them.

                                                                                        Waymo's Laserbear lidar? Seems like it has a lot of potential, but not for AV companies directly competing with them.

                                                                                        Google's playing this game pretty fiercely... which given their size is pretty bad/daunting.

                                                                                        • 5 years ago
                                                                                        • sgt101 5 years ago
                                                                                          >Nothing crazy about it. TPU-like stuff is ~10x the energy efficiency of GPUs and several times the speed. When you're spending megawatt-hours and days to train a single model, it adds up in both real and opportunity costs.

                                                                                          could you share the stats on this? Google told me to use a K-80 for training.

                                                                                          • vintermann 5 years ago
                                                                                            > Also, Google TPU TOS prohibits the use of TPUs for stuff that competes with Google

                                                                                            Can it be true? Then again, Apple's app store behaviour seems to suggest such demands are tolerated. Antitrust is really asleep in the US, isn't it.

                                                                                          • roystonvassey 5 years ago
                                                                                            Also, the software part of it (NNs and their algorithms) have been so widely researched and published that competitive advantages here are harder to come by than in hardware RD.

                                                                                            Also, vendor lock-in is a huge challenge in the cloud space. I don’t think Tesla would be comfortable with the fact that all their training data sits on a potential competitor’s datacenter.

                                                                                            • jacquesm 5 years ago
                                                                                              A car is a hardware device as well, and an electric car does not have the kind of power budget that allows you to throw oodles of standard pieces at it without paying a severe penalty in range.
                                                                                              • codeulike 5 years ago
                                                                                                Compared to the energy needed to move the car, everything else is pretty irrelevant. Power hungry features like Heating/AC only makes a few % difference to range.
                                                                                            • dna_polymerase 5 years ago
                                                                                              So would you trust the company that owns one of your biggest competitors in this field (Waymo) with the stuff that decides over success: data?
                                                                                              • sdan 5 years ago
                                                                                                Did they say they were building their own training hardware? I thought it was just their inference hardware (the boards on the teslas)?
                                                                                              • joenathanone 5 years ago
                                                                                                >Also, I'm really curious whether the custom hardware in the cars is benefiting them at all yet. Every feature they've released so far works fine on the previous generation hardware with 1/10 the compute power.

                                                                                                The latest OTA finally brings a hardware v3 only feature, traffic cone visualization, and traffic cone automatic lane change.

                                                                                                • londons_explore 5 years ago
                                                                                                  I would guess that while the new hardware has the same features, the accuracy might be lower on the old GPU's because they are forced to use smaller networks or to run them at lower frame rates.
                                                                                                  • navigatesol 5 years ago
                                                                                                    Traffic cones today,1 million self driving robo taxis in 6 months, right?
                                                                                                  • thebruce87m 5 years ago
                                                                                                    Stay ahead? Are they actually ahead?
                                                                                                  • sdan 5 years ago
                                                                                                    Really liked this talk.

                                                                                                    Looks like they are really nicely orchestrating workloads and training on numerous nets asynchronously.

                                                                                                    As a person in the AV industry I think Tesla's ability to control the entire stack is great for Tesla... maybe not for everyone who can't afford/doesn't have a Tesla.

                                                                                                    • natch 5 years ago
                                                                                                      >maybe not for everyone who can't afford/doesn't have a Tesla.

                                                                                                      Affordability is not as much of an issue as some make it out to be. Cost-wise it's like owning a Camry or an Accord, if you go for the lower end models. If you mean not everyone can afford a new car, then sure I agree with you.

                                                                                                      Edit: if you think I'm wrong about this, please explain or ask me to clarify anything?

                                                                                                      • sdan 5 years ago
                                                                                                        As a small anecdote, my parents couldn't afford/didn't want to spent over $30k for a car. Surely we could've gotten a Tesla for $5k+ more, but given the relatively new infrastructure with electric charging stations (and the fact that none are available in the apartment I live in) my parents didn't find all the new cool features appealing and instead got a regular Toyota Sienna that has nothing fancy, just enough to take the family around.

                                                                                                        Similarly, the infrastructure around electric charging stations I believe hasn't fully matured yet and as a result many people who've already owned a car, I believe will stick with gas cars since there's no huge incentive to change, unless it becomes easier to charge (faster, more convenient).

                                                                                                        Do note that I don't have a drivers license. I never intend on getting one (I believe in what I do in the AV industry). I'm just guessing on the habits of people, not that I have any real experience in buying a gas/electric car.

                                                                                                        Also note I didn't think you were wrong, not sure why the downvotes.

                                                                                                        • natch 5 years ago
                                                                                                          Thanks for the reply. Living in an apartment is not a big issue for me... we have two, live in an apartment with no charger.

                                                                                                          That's interesting that you relate something you do in the AV industry to not ever getting a car... what's that about?

                                                                                                          I do think that it's possible in the future the majority of people will never need to own a car.

                                                                                                    • londons_explore 5 years ago
                                                                                                      I'm still amazed that Teslas team isn't using a map... I know maps get outdated and are sometimes wrong, but having inaccurate knowledge of what's around the corner is far far more helpful than not having any clue whats around the corner.

                                                                                                      The smart solution would be to consider a map a probabilistic thing, which neural networks are really good at handling.

                                                                                                      • anonu 5 years ago
                                                                                                        I'm still amazed Tesla has decided not to use lidar and instead just stick with cheap cameras. Better sensors are there, they're available, they're cheap and they can probably "see" better than plain old cameras... it doesn't make too much sense not to use them IMHO. But then again, I am not coding NNs for Tesla...
                                                                                                        • JoeSmithson 5 years ago
                                                                                                          I think they advertised self-driving as a future feature of the Model 3, so I think they are limited to whatever Model 3's currently have.
                                                                                                          • londons_explore 5 years ago
                                                                                                            While LIDAR's are certainly 'better' from a technological standpoint than not having anything, from a business standpoint it's less clear.

                                                                                                            LIDAR's are cheap, but not cheap enough yet to not seriously affect the bottom line if you put them into every car. It also will kill the resale price of cars without it, which in turn hurts the companies image and stock price.

                                                                                                            • nielsole 5 years ago
                                                                                                              If you are first to market with a level 4 autonomous taxi, unit economics will likely be great regardless of whether you put LIDAR or cameras in.
                                                                                                            • tim333 5 years ago
                                                                                                              Musk doesn't like it:

                                                                                                              >“Lidar is a fool’s errand,” Elon Musk said. “Anyone relying on lidar is doomed. Doomed! [They are] expensive sensors that are unnecessary. It’s like having a whole bunch of expensive appendices. Like, one appendix is bad, well now you have a whole bunch of them, it’s ridiculous, you’ll see.” https://techcrunch.com/2019/04/22/anyone-relying-on-lidar-is...

                                                                                                              • dna_polymerase 5 years ago
                                                                                                                I recommend watching George Hotz's take on this: https://www.youtube.com/watch?v=IxuU5L2MEII
                                                                                                                • leesec 5 years ago
                                                                                                                  You're underestimating the cost issue. Obviously if it was literally 0% extra cost they would have a value benefit. The problem is making a great and cheap and profitable electric vehicle.
                                                                                                                  • option 5 years ago
                                                                                                                    lidars are used to generate humongous amounts of labeled training data for depth perception networks so that you don’t have to use them during inference
                                                                                                                    • mattrp 5 years ago
                                                                                                                      Kaparthy has a good presentation outlining why they aren’t focused on lidar.. it’s pretty compelling logic.
                                                                                                                      • Shoop 5 years ago
                                                                                                                        Do you have a link handy? I couldn't find it with a quick google.
                                                                                                                      • cycrutchfield 5 years ago
                                                                                                                        It’s not like they decided not to use it just because. Here is an interesting breakdown:

                                                                                                                        https://cleantechnica.com/2016/07/29/tesla-google-disagree-l...

                                                                                                                      • mattrp 5 years ago
                                                                                                                        I could be wrong but I recall Lyft is using hyper accurate maps.
                                                                                                                      • Gravityloss 5 years ago
                                                                                                                        Interesting that they don't have a full 3D world model. I'm certainly not a machine learning expert. I'm still amazed the route from image recognition to a 2D map of "what's drivable" to autonomous driving is so direct. One would expect to hit a ceiling really soon with that approach.

                                                                                                                        To me it seems we're still in really early days.

                                                                                                                        • spyder 5 years ago
                                                                                                                          They're doing 3D for the road path, and even predicting it beyond corners:

                                                                                                                          https://youtu.be/Ucp0TTmvqOE?t=8137

                                                                                                                          And later in the video they show 3D reconstruction from cameras and saying they use it in the car.

                                                                                                                          Watching the full talk is recommended if you have the time (talk starts around 1:10:00 in the video)

                                                                                                                          • Gravityloss 5 years ago
                                                                                                                            Thanks, seems my original comment is wrong then!
                                                                                                                        • eanzenberg 5 years ago
                                                                                                                          One thing I didn't quite understand is how training sub-graphs in parallel works. If you are editing a sub-graph of a monolith type model, aren't you affecting other graphs that have dependencies on the one you're editing? If these are independent graphs, then what's a "sub-graph" even mean?
                                                                                                                          • punnerud 5 years ago
                                                                                                                            In PyTorch you have full control on the graph and weight, everything feels like Python. So feeding some of the learning between “sub-graph” is easy. Not sure if this is possible on Tensorflow/Keras?

                                                                                                                            He describes the sub-graph training in the context that they they have all the predictors in one big model, and with control of the network can feedforward and train sub-graph (read sub-parts) of the model.

                                                                                                                            • eanzenberg 5 years ago
                                                                                                                              This is possible in keras, just drive new models that are functions of a monolith model and train independently. I still don’t understand the point though. If you train a “subgraph”, the other tasks dependent on the part of the graph will have to get retrained anyways, since those edits will affect the other tasks.
                                                                                                                            • antpls 5 years ago
                                                                                                                              First time I read about "sub-network" is in this AI Google blog post : https://ai.googleblog.com/2019/09/recursive-sketches-for-mod...

                                                                                                                              They talk about the concept of "modular network". The article itself links to the Wikipedia page : https://en.wikipedia.org/wiki/Modular_neural_network

                                                                                                                              Not sure it's exactly the same idea, but it looks similar.

                                                                                                                              • paraschopra 5 years ago
                                                                                                                                I think their architecture might be their secret sauce. But I'm curious about this too.
                                                                                                                              • fyp 5 years ago
                                                                                                                                For those who want to learn more, I would start with Mask-RCNN where you have a very similar architecture: one shared backbone with multiple heads that can be retrained for various tasks (bounding boxes, masks, keypoints, etc): https://youtu.be/g7z4mkfRjI4?t=628
                                                                                                                                • kegan 5 years ago
                                                                                                                                  Anyone knows why Andrej's team chooses PyTorch (as oppose to say TensorFlow?)
                                                                                                                                  • jeffshek 5 years ago
                                                                                                                                    Some potential reasons:

                                                                                                                                    - TensorFlow is great at deployment, but not the easiest to code. PyTorch isn't frequently used in production until recently.

                                                                                                                                    - If you have the resources for great AI engineers and researchers, your team will be good enough to build and deploy both frameworks.

                                                                                                                                    - Preference toward the easier framework your tech leads prefer.

                                                                                                                                    - Lots of new academic research is coming in PyTorch

                                                                                                                                    - TensorFlow is undergoing a massive change from 1.1x to 2.0; if you choose TensorFlow, write on 1.1x just to then refactor to TF 2.0? Or write on TF 2.0 now and deal with all new edge cases? Or write in PyTorch (easier) but handle the more difficult deployment process.

                                                                                                                                    - ML code quickly rots. Bad PyTorch code is just bad Python code. Bad TensorFlow code can be a nightmare to debug.

                                                                                                                                    - PyTorch's eager execution makes coding NNs much easier to prototype and build.

                                                                                                                                    • ankeshanand 5 years ago
                                                                                                                                      • tigershark 5 years ago
                                                                                                                                        Not at expert, but as far as I understood PyTorch is much better to build new models, while with tensorflow it’s easier to assemble the predefined blocks. Source: somewhere in the motivations on why Fast.Ai courses switched to PyTorch for the second edition.
                                                                                                                                        • m0zg 5 years ago
                                                                                                                                          Because PyTorch literally triples researcher productivity. Imagine a deep learning framework which you can actually debug when something goes wrong and which you don't have to fight every step of the way to do even simple things. That's PyTorch.
                                                                                                                                        • laichzeit0 5 years ago
                                                                                                                                          The good news for me is that the upper bound for fully autonomous self-driving cars is no more than 50 years away. What a time to be alive. If it happens before then, that will be an absolute bonus.
                                                                                                                                          • diveanon 5 years ago
                                                                                                                                            Andrej Karpathy is such a treasure.

                                                                                                                                            He is an excellent presenter who really has a passion for teaching.

                                                                                                                                            Im not really involved with the industry, so I cant really speak to how he holds up to other experts. However he is by far the most digestable resource I have found for learning about NN and science behind them.

                                                                                                                                            If you are just discovering him now, google his name and just start reading. His work is truly binge worthy in the most meaningful way.

                                                                                                                                            • SloopJon 5 years ago
                                                                                                                                              The description of SmartSummon about halfway through the talk is interesting. One of the views looks like SLAM using a particle filter, but Andrej seems to say that it's done entirely within a neural net.
                                                                                                                                              • alexnewman 5 years ago
                                                                                                                                                Jeeze and I can't get my pytorch to stop leaking memory. I couldn't imagine trying to drive a car with it
                                                                                                                                                • Joky 5 years ago
                                                                                                                                                  Pytorch is used to train models on servers/cloud, not to drive the car later. The trained model is converted to something native to the embedded environment of the car.
                                                                                                                                                • jfoster 5 years ago
                                                                                                                                                  I wonder if the environment the car discovers includes elevation. Would be necessary for handling many carparks.
                                                                                                                                                  • williesleg 5 years ago
                                                                                                                                                    Tesla is the best!
                                                                                                                                                    • suehebfbfjfrifh 5 years ago
                                                                                                                                                      I'd rather he talk about why he works for a con artist who will never create self driving cars (not that anyone else will in the next few decades) but keeps promising to do it.
                                                                                                                                                      • ngcc_hk 5 years ago
                                                                                                                                                        Wow
                                                                                                                                                        • adamnemecek 5 years ago
                                                                                                                                                          The trick for level 5 is learning the mapping between the lidar point cloud and the video stream. It’s the best of both worlds.
                                                                                                                                                          • ben_w 5 years ago
                                                                                                                                                            That might be a trick. It’s not the trick human brains use. It might be equivalent to the way that when we say we want to “look at” a thing, we often also want to touch it.

                                                                                                                                                            https://kitsunesoftware.wordpress.com/2017/07/27/why-do-peop...

                                                                                                                                                            • pgodzin 5 years ago
                                                                                                                                                              Tesla doesn't have have a lidar point cloud at all
                                                                                                                                                              • adamnemecek 5 years ago
                                                                                                                                                                That’s the point. You train with lidar, deploy with cameras.
                                                                                                                                                              • ojn 5 years ago
                                                                                                                                                                That falls apart as soon as the map and the real world deviates and you need to drive based on what’s in front of you.

                                                                                                                                                                Lidar helps you spot obstructions, but won’t tell you what they are and won’t help you figure out what to do to avoid them.

                                                                                                                                                                Want an example? Cruise’s first real world demo got stuck behind a simple taco truck in downtown SF.

                                                                                                                                                                • antpls 5 years ago
                                                                                                                                                                  The parent meant : gather training data with Lidar and Camera, then build a model with that data to learn to reconstruct a 3D space only from Camera data, and then embed that model in the cars.

                                                                                                                                                                  Tesla is already using a model to rebuild a 3D space from Camera data only, the parent suggests to improve the quality of the transformation with high quality 3D representations from Lidar.

                                                                                                                                                                  It's deep learning all the way down.

                                                                                                                                                                • Geee 5 years ago
                                                                                                                                                                  2D to 3D transform is simple trigonometry (using stereo / motion) and should be possible to learn without lidar. I think this is already a solved problem. One option though is to add lidars in random Teslas (e.g. 1/1000) to help with the labeling / learning.
                                                                                                                                                                  • adamnemecek 5 years ago
                                                                                                                                                                    The field is called photogrammetry. It's not...precise. Point clouds have a much richer structure.
                                                                                                                                                                  • sheeshkebab 5 years ago
                                                                                                                                                                    One could also train a car driving model driving in grand theft auto... but are all these tricks really what level 5 is about? I doubt
                                                                                                                                                                    • djebdbebeejrrn 5 years ago
                                                                                                                                                                      The trick for level 5 is creating artificial general intelligence. In other words, level 5 will almost certainly not happen any time in the next 50 years. Musk is a con artist and Karpathy is one of his enablers.
                                                                                                                                                                    • mkagenius 5 years ago
                                                                                                                                                                      Oh he's no longer with OpenAI? Sam Altman must be worried about this..
                                                                                                                                                                      • timdorr 5 years ago
                                                                                                                                                                        He's been at Tesla for almost 2 and a half years now: https://techcrunch.com/2017/06/20/tesla-hires-deep-learning-...
                                                                                                                                                                        • spectramax 5 years ago
                                                                                                                                                                          Without meaning offense to Sam, I thought he was an investor / YC head. What credentials does he have to be at OpenAI?
                                                                                                                                                                          • jayparth 5 years ago
                                                                                                                                                                            Perhaps founding the initiative....
                                                                                                                                                                            • visarga 5 years ago
                                                                                                                                                                              Teaching the CS231n course at Stanford, for one.
                                                                                                                                                                              • _cs2017_ 5 years ago
                                                                                                                                                                                Andrej Karpathy taught cs231n. The question is about Sam Altman who didn't teach anything related to NL. He's on the board of OpenAI because he was one of its founding investors.
                                                                                                                                                                                • mkagenius 5 years ago
                                                                                                                                                                                  He did? I only knew of 183B which is "How to start a startup"
                                                                                                                                                                                  • spectramax 5 years ago
                                                                                                                                                                                    Thanks, that makes sense. So now the question is - how did Sam become a YC/Angel investor from someone who taught a class at Stanford? I think we need an interview with Sam.
                                                                                                                                                                                • new_realist 5 years ago
                                                                                                                                                                                  Elon Musk poached him, and for that was kicked off the OpenAI board.
                                                                                                                                                                                  • Pazzaz 5 years ago
                                                                                                                                                                                    I've never heard that that was the reason for Elon leaving the OpenAI board. The official announcement said "As Tesla continues to become more focused on AI, this will eliminate a potential future conflict for Elon." Do you have a source?
                                                                                                                                                                                    • slim 5 years ago
                                                                                                                                                                                      that statement is the politically correct version of "poached an employee"
                                                                                                                                                                                  • cyrux004 5 years ago
                                                                                                                                                                                    for over 2 years now
                                                                                                                                                                                  • new_realist 5 years ago
                                                                                                                                                                                    Meanwhile Waymo is way ahead.
                                                                                                                                                                                    • grecy 5 years ago
                                                                                                                                                                                      Do you belittle everyone that gets second place in the Olympics because the winner is "way ahead"?

                                                                                                                                                                                      Your comment just reeks of anger and hostility.

                                                                                                                                                                                      It seems like you'd rather Tesla didn't try at all, and instead we all just give up and go back to the status quo.

                                                                                                                                                                                      • Fricken 5 years ago
                                                                                                                                                                                        Meanwhile General Motors is way ahead.
                                                                                                                                                                                        • adrr 5 years ago
                                                                                                                                                                                          Elon belittles lidar saying it is doomed and will never work yet Waymo and Cruise will probably be operating self driving taxi fleets in California next year. Tesla deserves getting dumped on for those comments because they are no where near self driving.
                                                                                                                                                                                          • xiphias2 5 years ago
                                                                                                                                                                                            Andrej Karpathy just started working on Tesla's software 2 years ago, before what Chris Lattner did was a mess (he wanted to just have 1 task that learns magically everything), Andrej had to start everything from scratch.

                                                                                                                                                                                            Waymo had a 20 year advantage, but Google lost many key people there in the meantime as Larry Page didn't want to launch partial self driving.

                                                                                                                                                                                            I think both approaches are great and I wouldn't want to choose between the 2, just be a happy user of the end result of the competition.

                                                                                                                                                                                            • deboflo 5 years ago
                                                                                                                                                                                              I live in San Francisco. Every time I see Cruise vehicles, the driver has his hands on the steering wheel.
                                                                                                                                                                                          • tim333 5 years ago
                                                                                                                                                                                            Waymo has a significantly different approach using lidar rather than just vision. The approaches seem to have different strengths and weaknesses. Waymo is actually able to do full autonomy but in very restricted environments - basically semi deserted suburbs. Tesla's autopilot works in real city rush hour traffic but not reliably enough to be let lose on it's own. It remains to be seen which will win or if it will be some other solution.
                                                                                                                                                                                            • dsego 5 years ago
                                                                                                                                                                                              But can waymo drive straight towards a concrete barrier on the highway?

                                                                                                                                                                                              https://youtu.be/fKyUqZDYwrU

                                                                                                                                                                                              • m0zg 5 years ago
                                                                                                                                                                                                Except, well, Waymo doesn't actually build cars, and has no plans to do so.
                                                                                                                                                                                              • mindfulplay 5 years ago
                                                                                                                                                                                                Just listening to this talk scares me. The amount of errors - even in a seemingly normal, sunny day - is mind boggling to think people trust this crap.

                                                                                                                                                                                                How can we rely on the output of eight cameras? This is not a kid's science project.

                                                                                                                                                                                                It's all fancy neural networks until someone dies. Pretty callous and Silicon valley-mindset for such an important and critical function of the car.

                                                                                                                                                                                                Will never buy a Tesla after having seen this.

                                                                                                                                                                                                • panarky 5 years ago
                                                                                                                                                                                                  > mind boggling to think people trust this crap

                                                                                                                                                                                                  It's also mind boggling to think we currently trust organic tissue to do this crap, some of which is bathed in psychoactive chemicals.

                                                                                                                                                                                                  And yet we do, and as a result, horrendous catastrophes occur every minute of every day.

                                                                                                                                                                                                  > It's all fancy neural networks until someone dies

                                                                                                                                                                                                  No, that can't be the standard, not when people are dying right now in the current regime.

                                                                                                                                                                                                  Unless the new regime kills and maims at a higher rate than the current regime, there is no reason for fear.

                                                                                                                                                                                                  • thebruce87m 5 years ago
                                                                                                                                                                                                    No, it needs to be a lower rate since it will kill at random. Today’s rate includes drunk drivers, people on their phone and other “unsafe” drivers. If you are an attentive driver your chance of death would actually go up if the overall death rate was the same.
                                                                                                                                                                                                    • slim 5 years ago
                                                                                                                                                                                                      if you are an attentive driver you can get killed anytime by these other drivers
                                                                                                                                                                                                      • marvin 5 years ago
                                                                                                                                                                                                        Thankfully, using these features is optional.
                                                                                                                                                                                                      • semi-extrinsic 5 years ago
                                                                                                                                                                                                        To really be a measurable improvement over humans, and especially an improvement that is statistically distinguishable from just letting the safety tech of 2019 percolate into the average car, self-driving needs to achieve fatality rates around 0.1 per billion miles.

                                                                                                                                                                                                        Current averages for the US are around 10 per billion miles and decreasing; best countries in Europe are already below 5 per billion miles.

                                                                                                                                                                                                        There's some really interesting progress both on vehicles monitoring driver attention, and on monitoring for alcohol in the air, that would yield substantial improvements even beyond 2019 tech. I have no doubt we'll see fatality rates below 1 per billion miles in Western Europe within a decade.

                                                                                                                                                                                                        The corollary of the statistics quoted above is that you need to observe your self-driving vehicle system over tens of billions of miles before you even know if you're safer or not.

                                                                                                                                                                                                        • tim333 5 years ago
                                                                                                                                                                                                          I'd quibble with your stats that self driving has to be 100x better than human to be a measurable improvement. You can estimate fairly well if a human driver is safe or not from a few hours as a passenger by seeing if they notice everything and if they have near misses. Also it's not to hard on published data to see the Tesla autopilot seems a fair bit worse than humans under the same conditions. I imagine they will improve.
                                                                                                                                                                                                        • perl4ever 5 years ago
                                                                                                                                                                                                          "It's also mind boggling to think we currently trust organic tissue to do this crap, some of which is bathed in psychoactive chemicals."

                                                                                                                                                                                                          The appropriate standard for self-driving cars is a sober professional driver, not the average idiot on Saturday night. It isn't unusual for a driver to go a million miles without an accident, when that's their job.

                                                                                                                                                                                                          • ajross 5 years ago
                                                                                                                                                                                                            No, the appropriate standard for a self-driving car is the driver they replace. If they're safer than whoever would have been driving (be it on a saturday night or not) then they're a net win. Right now the average idiots are buying more Teslas than mail carriers and cab drivers, though that might change I guess.

                                                                                                                                                                                                            Numbers are numbers.

                                                                                                                                                                                                        • freediver 5 years ago
                                                                                                                                                                                                          You are right this approach is scary, and it is astonishingly innacurate (im a tesla owner).

                                                                                                                                                                                                          However the reason are not eight cameras. You should be able to drive fine with just one camera (thought experiment: could you drive a car 1000 miles from you, just by seeing what the driver of that car would see, no extra cameras, sensors or lidars?).

                                                                                                                                                                                                          • mdorazio 5 years ago
                                                                                                                                                                                                            One stereoscopic ultra-HDR 4K camera would be fine... if it was backed by a strong AI. To even suggest that ML is anywhere wen remotely close to this level is the height of hubris.
                                                                                                                                                                                                            • freediver 5 years ago
                                                                                                                                                                                                              Not even stereoscopic, you could still drive with one eye shut.
                                                                                                                                                                                                            • mindfulplay 5 years ago
                                                                                                                                                                                                              I work closely on ondevice OCR technology - something that has improved so much and still cannot figure out the difference between I and 1.

                                                                                                                                                                                                              And that took many decades not even years and in a very constrained problem space.

                                                                                                                                                                                                              Releasing a "self driving" metal torpedo even if it's a limited Summons should at least be regulated if not outright banned.

                                                                                                                                                                                                              I feel like even a single accident let alone death should put these idiots behind bars.

                                                                                                                                                                                                              • rawoke083600 5 years ago
                                                                                                                                                                                                                How do we currently regulate and put behind bars the human drivers that drives the metal torpedoes like idiots ? Specifically the ones that are not caught.
                                                                                                                                                                                                                • jayd16 5 years ago
                                                                                                                                                                                                                  It is regulated. Would you like it to be regulated in a specific, different way?
                                                                                                                                                                                                              • optimiz3 5 years ago
                                                                                                                                                                                                                Your comments read like /r/RealTesla | TSLAQ fud.

                                                                                                                                                                                                                Please explain, in detail, what your specific objections are, and how you are more qualified on this subject matter than the presenter.

                                                                                                                                                                                                                • mindfulplay 5 years ago
                                                                                                                                                                                                                  I am honestly scared even of WayMo that I think unless NHTSA gets its acts together this shit shouldn't be allowed on roads.

                                                                                                                                                                                                                  It's often reactionary - people wait for someone to die and then suddenly you have nervous Musk in front of Congress and such crap. Why wait? Why can't these be regulated before allowing on roads?

                                                                                                                                                                                                                  And no, failover control is not acceptable given the past incidents and deaths.

                                                                                                                                                                                                                  • Joky 5 years ago
                                                                                                                                                                                                                    You seem to use "regulated" as in "forbidden" right now, but maybe I am misreading so can you elaborate?

                                                                                                                                                                                                                    Today thousands are dying every year on the road, are we just forbidding cars entirely?

                                                                                                                                                                                                                    > And no, failover control is not acceptable given the past incidents and deaths.

                                                                                                                                                                                                                    How many incidents/deaths per miles driven? How does it compare to all the other transportation systems?

                                                                                                                                                                                                                    • chrisco255 5 years ago
                                                                                                                                                                                                                      The only way to train these things is on actual roads. As far as I know, all of these systems require a human driver present at this time. None are fully autonomous.
                                                                                                                                                                                                                  • natch 5 years ago
                                                                                                                                                                                                                    It does require human supervision while driving.

                                                                                                                                                                                                                    Tesla makes this very clear.

                                                                                                                                                                                                                    It's also all over the Internet.

                                                                                                                                                                                                                    But there will always be people who do not get this.

                                                                                                                                                                                                                    Those people should not drive Teslas, or pretty much any modern car for that matter.

                                                                                                                                                                                                                    If you are under the impression that you would be relying on this system to drive the car, then I agree you should not get a Tesla.

                                                                                                                                                                                                                    Of course full self driving is coming at some point, but that's a conversation for another day. Meantime Tesla is making steps toward it very incrementally with things like the "stop mode" rolling out right now.

                                                                                                                                                                                                                    • yo-scot-99 5 years ago
                                                                                                                                                                                                                      this tech is interesting but so poorly understood that it's just using the (public) roads as one large alpha test. given a NN there is no way to verify what safety ranges are there. for instance if each camera slightly changed exposure or occlusion are the results smoothly changing? all they can do is try it and hope the inputs are in a safe part of their optimization space.
                                                                                                                                                                                                                      • 0-_-0 5 years ago
                                                                                                                                                                                                                        Just replace "eight" with "two" and this could have been written about the human brain
                                                                                                                                                                                                                        • oska 5 years ago
                                                                                                                                                                                                                          And driving with only one is still legal.
                                                                                                                                                                                                                          • anticensor 5 years ago
                                                                                                                                                                                                                            Monocular or deaf driving is subject to many restrictions including being unable to drive a commercial vehicle.
                                                                                                                                                                                                                        • matz1 5 years ago
                                                                                                                                                                                                                          How many actually dies? Do you have the statistic?
                                                                                                                                                                                                                          • k2xl 5 years ago
                                                                                                                                                                                                                            Hmm how do you explain that data shows that there are likely less accidents and less road fatalities when autopilot is engaged?
                                                                                                                                                                                                                          • newnewpdro 5 years ago
                                                                                                                                                                                                                            Same.

                                                                                                                                                                                                                            Watching the AI visualization of summons in-action was horrifying, and made clear why many have reported summons mode as resembling a drunk person navigating a parking lot.

                                                                                                                                                                                                                            • natch 5 years ago
                                                                                                                                                                                                                              Yes it's not perfected yet, which is why it requires human supervision for now. Having it operate in the wild as it is now (again, under human supervision) will help it become less horrifying, which I think you would agree is what we want.
                                                                                                                                                                                                                              • newnewpdro 5 years ago
                                                                                                                                                                                                                                I don't agree, as I don't particularly value/want a future with self-driving vehicles.

                                                                                                                                                                                                                                I also think the way Tesla is going about this is utterly idiotic and reckless. It upsets me that I'm sharing roads with vehicles having these dysfunctional immature systems.

                                                                                                                                                                                                                                Point this crap at video game engines and don't let it anywhere near real people until it can drive millions of virtual miles in something like GTA without hitting anyone/anything and without behaving like a drunk driver who lost their glasses.